

ELE 305: Introduction to Electrical Engineering Exam 1 – Spring 2017

Duration: **1 hour 40 minutes** Date: 27/02/2016 Start Time: 7:00 pm Dr. Elie Abou Diwan Dr. Jihad Jawad Fahs Dr. Harag Margossian

Name:	ID#:

INSTRUCTIONS:

- Answer each of the following questions in the space provided.
- You can use both sides of the sheets for answers.
- Solutions written outside this booklet will not be graded.
- This is a closed-book exam
- Programmable calculators and smart devices are not allowed.
- The number of points for each question is specified next to it.
- The total number of points is 100.

1	2	3	4	5	Total
/30	/15	/20	/10	/25	/100

Question 1 (30 points)

Consider the network in Figure 1.

- a) What is the equivalent resistance seen by the element connected between nodes A and B in the circuit of Figure 1?
- b) If the charge leaving the element is as given in Figure 2, sketch the voltage V_{AB} from t=0 to 9ms. *Hint:* if you could not solve part (a), use $R_{eq}=10\Omega$

Figure 1

Figure 2

Question 2 (15 points)

Use mesh analysis to calculate the power delivered by the 3mA source in the network shown in Figure 3.

Figure 3

Question 3 (20 points)

Use superposition to find V_o in the network in Figure 4.

Figure 4

Question 4 (10 points)

 4Ω + $8 V + V_{0} \leq 8 \Omega$ - 4Ω 2Ω

Use source transformation to find $V_{\rm o}$ in the network in Figure 5.

Figure 5

Question 5 (25 points)

Consider the network in Figure 6.

- a. Find the thevenin equivalent of the circuit between nodes A and B as seen by the resistances R1 and R2.
- b. Find an expression for R_2 in terms of R_1 that would ensure maximum power transfer to R_2 .

Figure 6