Department of Electrical and Computer Engineering

ELE 305: Introduction to Electrical Engineering Exam 1 - Spring 2017

Duration: 1 hour 40 minutes
Dr. Elie Abou Diwan
Date: 27/02/2016
Dr. Jihad Jawad Fahs
Start Time: 7:00 pm
Dr. Harag Margossian

Name:
 INSTRUCTIONS:

\qquad ID\#: \qquad

- Answer each of the following questions in the space provided.
- You can use both sides of the sheets for answers.
- Solutions written outside this booklet will not be graded.
- This is a closed-book exam
- Programmable calculators and smart devices are not allowed.
- The number of points for each question is specified next to it.
- The total number of points is 100 .

Question 1 (30 points)

Consider the network in Figure 1.
a) What is the equivalent resistance seen by the element connected between nodes A and B in the circuit of Figure 1?
b) If the charge leaving the element is as given in Figure 2, sketch the voltage V_{AB} from $\mathrm{t}=0$ to 9 ms . Hint: if you could not solve part (a), use $\mathrm{R}_{\mathrm{eq}}=10 \Omega$

Figure 1

Figure 2

Question 2 (15 points)

Use mesh analysis to calculate the power delivered by the 3 mA source in the network shown in Figure 3.

Figure 3

Question 3 (20 points)

Use superposition to find V_{o} in the network in Figure 4.

Figure 4

Question 4 (10 points)

Use source transformation to find V_{o} in the network in Figure 5.

Figure 5

Question 5 (25 points)

Consider the network in Figure 6.
a. Find the thevenin equivalent of the circuit between nodes A and B as seen by the resistances R1 and R2.
b. Find an expression for R_{2} in terms of R_{1} that would ensure maximum power transfer to R_{2}.

Figure 6

